1.Толук аты-жөнү | Нуракунов Анвар Мухпарович |
2. Иштеген жери (Толук аталышы) | Математика институты КР УИА, |
3. Уюмдун дареги | Чуй пр. 265а, Бишкек, 720071 |
4. Билими | Новосибирск мамлекетик университеты, Новосибирск ш., СССР (Орусия) |
5. Илимий даражасы, наамы | Физика жана математика илимдеринин доктору |
6. Кесиптик тажрыйбасы (жыл саны) | 40 |
7. Илимий ишмердүүлүк багыты | Математикалык логикасы, универсалдык алгебра жана тор теориясы, моделдик теориясы, формалдык концепт анализы, жалпы топология
|
8. Эксперт катары иш тажрыйбасы (эгер болсо, жыл саны) |
|
9. Жарыяланган эмгектердин тизмеси (2020-2025-ж) | (1) Bekenov, M., Kassatova, A., and Nurakunov, A. (2025). On absorption’s formula definable semigroups of complete theories. Arch. Math. Logic 64, 107–116 (2025). https://doi.org/10.1007/s00153-024-00937-2 (2) Nurakunov, A.M. (2024).Quasivarieties of algebras whose compact relative con- gruences are principal. Algebra Univers. 85, 36 (2024).https://doi.org/10.1007/s00012-024-00866-4 (3) N. Bazhenov, M. Mustafa and A. Nurakunov (2024): On Concept Lattices for Numberings. Tsinghua Science and Technology, 29, 1642-1650.doi: 10.26599/TST.2023.9010102. (4) Nurakunov, A.M., Schwidefsky, M.V. (2024): Profinite Locally Finite Quasivari- eties. Stud Logica. 112, 835–859 (2024). https://doi.org/10.1007/s11225-023-10077-y (5) N. Bazhenov, M. Mustafa, A.M. Nurakunov (2022): Two Types of Concept Lattices in the Theory of Numberings, D.-Z. Du et al. (Eds.): TAMC 2022, Lecture Notes in Computer Science 13571, pp. 79-92, 2022. https://doi.org/10.1007/978-3-031-20350-3 8 (6) A. O. Basheyeva, M. Mustafa, A. M. Nurakunov (2022): Identities and quasi- identities of pointed algebras, Sib. Math. J. 63, 197–205.https://doi.org/10.1134/S003744662202001X (7) Kravchenko, A.V., Nurakunov, A.M. and Schwidefsky, M.V. (2021): Structure of Quasivariety Lattices. IV. Nonstandard Quasivarieties. Sib. Math. J. 62, 850–858. https://doi.org/10.1134/S0037446621050074 (8) Makhsut Bekenov, Anvar Nurakunov (2021): Semigroup of theories and its lattice of idempotent elements, Algebra and Logic, 60, 1-14,https://doi.org/10.1007/s10469-021-09623-1 (9) Ainur O. Basheyeva, Manat Mustafa and Anvar M. Nurakunov (2020): Proper-ties not retained by pointed enrichments of finite lattices, Algebra Universalis, 81, 56 https://doi.org/10.1007/s00012-020-00692-4 (10) Kravchenko, A.V., Nurakunov, A.M., Schwidefsky, M.V. (2020): On the complex ity of the lattices of subvarieties and congruences, International Journal of Algebra and Computation, https://doi.org/10.1142/S0218196720500563 (11) Kravchenko, A.V., Nurakunov, A.M., Schwidefsky, M.V. (2020): Structure of quasivariety lattices. III. Finitely partitionable bases, Algebra |
10. Байланыш маалыматтары: телефон номери, e-mail | +996 554 250261 a.nurakunov@gmail.com |